

FEATURES

- ► High Power Density in SIP-8 Package
- ► Small Footprint: 21.8 x 9.3 mm (0.86"x 0.37")
- ▶ Ultra-wide 4:1 Input Range
- ► Fully Regulated Output
- Operating Temp. Range -40°C to +85°C
- Overload Protection
- ► I/O-Isolation Voltage 1600 VDC
- Remote On/Off Control
- > 3 Years Product Warranty

PRODUCT OVERVIEW

The MINMAX MCWI03 series is a range of isolated 3W DC/DC converter modules featuring fully regulated output and ultra-wide 4:1 input voltage ranges. The product comes in a SIP-8 package with a very small footprint occupying only 2.0 cm2 (0.3 square in.) on the PCB.

An excellent efficiency allows an operating temperature range of -40°C to +85°C. Further features include remote On/Off control and over load protection. The very compact dimensions of these DC/DC converters make them an ideal solution for many space critical applications in battery-powered equipment and instrumentation.

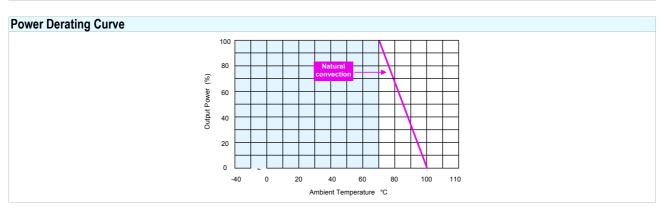
del Selection G	uluc									
Model	Input	Output	Output Current Input Current		Current	Max. capacitive Load	Efficiency			
Number Voltag	Voltage	Voltage					(typ.)			
	(Range)		Max.	Min.	@Max. Load	@No Load		@Max. Load		
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	uF	%		
MCWI03-12S033		3.3	700	175	260		1760	74		
MCWI03-12S05		5	600	150	320		1000	78		
MCWI03-12S12	12	12	250	63	313		170	80		
MCWI03-12S15	(4.5 ~ 18)	15	200	50	313	60	110	80		
MCWI03-12D05	(4.5 ~ 16)	±5	±300	±75	313		470 #	80		
MCWI03-12D12		±12	±125	±31	313		100 #	80		
MCWI03-12D15		±15	±100	±25	313		47 #	80		
MCWI03-24S033	04	3.3	700	175	128		1760	75		
MCWI03-24S05		5	600	150	156		1000	80		
MCWI03-24S12		12	250	63	154		170	81		
MCWI03-24S15	24	15	200	50	154	25	110	81		
MCWI03-24D05	(9 ~ 36)	±5	±300	±75	158		470 #	79		
MCWI03-24D12		±12	±125	±31	156		100 #	80		
MCWI03-24D15		±15	±100	±25	154		47 #	81		
MCWI03-48S033		3.3	700	175	65				1760	74
MCWI03-48S05		5	600	150	79		1000	79		
MCWI03-48S12	40	12	250	63	79		170	79		
MCWI03-48S15	48	15	200	50	79	15	110	79		
MCWI03-48D05	(18 ~ 75)	±5	±300	±75	79		470 #	79		
MCWI03-48D12		±12	±125	±31	79		100 #	79		
MCWI03-48D15		±15	±100	±25	78		47 #	80		

For each output

Input Specifications					
Parameter	Model	Min.	Typ.	Max.	Unit
	12V Input Models	-0.7		25	
Input Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
	12V Input Models	3	4	4.5	
Start-Up Voltage	24V Input Models	4.5	6	9	VDC
	48V Input Models	8.5	12	18	
	12V Input Models		3.5	4	
Under Voltage Shutdown	24V Input Models			8	
	48V Input Models			16	
Reverse Polarity Input Current				1	Α
Short Circuit Input Power	All Models			2500	mW
Input Filter	All Wodels	Capacitor type			
Internal Power Dissipation				2600	mW

E-mail:sales@minmax.com.tw Tel:886-6-2923150

DC/DC CONVERTER 3W, SIP-Package


Output Specifications					
Parameter	Conditions	Min.	Typ.	Max.	Unit
Output Voltage Accuracy			±0.5	±1.0	%
Output Voltage Balance	Dual Output, Balanced Loads		±0.5	±2.0	%
Line Regulation	Vin=Min. to Max.		±0.3	±0.5	%
Load Regulation	lo=25% to 100%		±0.5	±1.0	%
Ripple & Noise (20MHz)			50	75	mV _{P-P}
Ripple & Noise (20MHz)	Over Line, Load & Temp.			100	mV _{P-P}
Transient Recovery Time	250/ Load Ston Change		300	500	uS
Transient Response Deviation	25% Load Step Change		±3	±5	%
Temperature Coefficient				±0.02	%/°C
Short Circuit Protection	Continuous				

General Specifications					
Parameter	Conditions	Min.	Typ.	Max.	Unit
I/O Isolation Voltage (rated)	60 Seconds	1600			VDC
I/O Isolation Resistance	500 VDC	1000			МΩ
I/O Isolation Capacitance	100KHz, 1V		200		pF
Switching Frequency			350		KHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	800,000			Hours

Input Fuse				
12V Input Models	24V Input Models	48V Input Models		
1500mA Slow-Blow Type	700mA Slow-Blow Type	350mA Slow-Blow Type		

Remote On/Off Control					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Converter On	Under 0.6 VDC or Open Circuit, drops down to 0VDC by 2mV/°C				
Converter Off		2.7		15	VDC
Device Standby Input Current			1	2.5	mA
Control Input Current (on)	Vin = 0V			1	mA
Control Input Current (off)	Vin = 5.0V			1	mA
Control Common	Referenced to Negative Input				

Environmental Specifications				
Parameter	Conditions	Min.	Max.	Unit
Operating Temperature Range (with Derating)	Ambient	-40	+85	°C
Case Temperature			105	°C
Storage Temperature Range		-55	+125	°C
Humidity (non condensing)			95	% rel. H
Cooling	Free-Air convection			
Lead Temperature (1.5mm from case for 10Sec.)			260	°C

E-mail:sales@minmax.com.tw Tel:886-6-2923150

DC/DC CONVERTER 3W, SIP-Package

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 Ripple & Noise measurement bandwidth is 0-20 MHz.
- 4 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however, they may not meet all specifications listed.
- 5 All DC/DC converters should be externally fused at the front end for protection.
- 6 Other input and output voltage may be available, please contact factory.
- 7 Specifications subject to change without notice.

Package Specifications Mechanical Dimensions 21.8 [0.86] | 1.8 [0.86] | 1.1 | 1.2 | 1.2 | 1.3 | 1.2 | 1.3 | 1.2 | 1.3

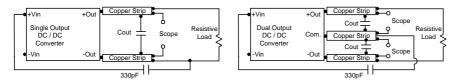
Pin Connections				
Pin	Single Output	Dual Output		
1	-Vin	-Vin		
2	+Vin	+Vin		
3	Remote On/Off	Remote On/Off		
5	NC	NC		
6	+Vout	+Vout		
7	-Vout	Common		
8	NC	-Vout		

NC: No Connection

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02) X.XX±0.25 (X.XXX±0.01)
- ► Pins ±0.1(±0.004)

Physical Characteristics

,	
Case Size	: 21.8x9.3x11.2 mm (0.86x0.37x0.44 inches)
Case Material	: Non-Conductive Black Plastic (flammability to UL 94V-0 rated)
Weight	: 4.8g



DC/DC CONVERTER 3W, SIP-Package

Test Configurations

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47uF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

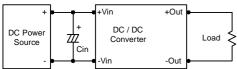
Design & Feature Considerations

Remote On/Off

Negative logic remote on/off turns the module off during a logic high voltage on the remote on/off pin, and on during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent.

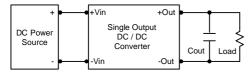
A logic high is 2.7V to 15V. A logic low is under 0.6 VDC or open circuit, drops down to 0VDC by 2mV/°C. The maximum sink current at on/off terminal during a logic low is 1 mA. The maximum allowable leakage current of the switch at on/off terminal= (under 0.6VDC or open circuit) is 1 mA.

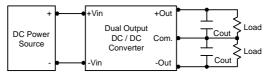
Maximum Capacitive Load


The MCWI03 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

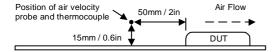
Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is commended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 1.00 KHz) capacitor of a 3.3uF for the 12V input devices and a 1.5uF for the 24V and 48V devices.

Output Ripple Reduction


A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3uF capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

